Minimum viewing angle for visually guided ground speed control in bumblebees.

نویسندگان

  • Emily Baird
  • Torill Kornfeldt
  • Marie Dacke
چکیده

To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.

When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each...

متن کامل

A study of operators’ computing efficiency with special focus on the readability under different viewing angles of a desktop

The main objective of this work is to determine the reading performance of operators’ under different viewing angles of a desktop computer. The effects of text/background color, viewing distance and character size on the speed of reading were investigated. The text and/or the background color combination were varied, with constant luminance contrast. Performance was recorded in terms of words p...

متن کامل

Effects of anisometropic amblyopia on visuomotor behavior, part 2: visually guided reaching.

PURPOSE The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. METHODS Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Holistic visual encoding of ant-like routes: Navigation without waypoints

It is known that ants learn long visually guided routes through complex terrain. However, the mechanisms by which visual information is first learned and then used to control a route direction are not well understood. In this article, we propose a parsimonious mechanism for visually guided route following. We investigate whether a simple approach, involving scanning the environment and moving i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2010